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Reconfiguration Algorithms for Interconnection Networks

A. YAVUZ ORUC, M. YAMAN ORUC, AND
NORMAN BALABANIAN

Abstract — The correspondence examines the functional relations
within a class of multistage interconnection networks. It is known that
these networks are not rearrangeable. This fact has led to some research
on interconnection network relations. The correspondence deals with one
aspect of this research, namely, that of constructing an equivalence map
between two interconnection networks. Procedures are given to test
whether two such networks are equivalent. Whenever they are, these
procedures also produce a map to conjugate one network onto the other.

Index Terms — Conjugation map, cycle map, functional equivalence,
interconnection network, permutation map.

I. INTRODUCTION

A large set of interconnection networks has been proposed for use
in parallel processing systems [2]-[7], [12], [13], [15]-[22]. It is
known that most of these networks are not rearrangeable. This fact
has led to some studies on interconnection network relations. Siegel
and Smith [16] examined and demonstrated some functional re-
lations among a number of networks. Siegel [17] later constructed
explicit maps to provide a simulation environment within a class of
interconnection networks. Wu and Feng [20], [21] further examined
the relations among existing multistage interconnection networks
and introduced the notion of topological and functional equivalence.
Both types of equivalence have been useful in classifying inter-
connection networks, although the functional equivalence is a more
practical notion as it amounts to just renaming the terminal nodes of
a network without disturbing its internal switching structure.

The research efforts reported in [16], [17], [20], [21] all made
significant contributions to the understanding of equivalence re-
lations among interconnection networks. Despite the progress being
made, however, the problem of testing and/or constructing equiva-
lences between two- networks consisting of switches other than
2 X 2 crossbars has so far remained open. The solution of this
problem for networks whose switches are programmable for identity
and cycle maps constitutes the focus of the present work.

The correspondence is organized as follows. An interconnection
network model and network relations are reviewed in Sections II
and I1I. In Section 1V, the reconfiguration of single-stage networks
is discussed in view of conjugation maps. In Section V, the recon-
figuration of multistage networks is considered, and a procedure for
constructing equivalence maps between functionally equivalent
networks is developed. The correspondence is concluded with
Section VI.

II. NETWORK MODEL

We begin by reviewing a network model introduced in [8] since
much of the discussions in the following sections rely on this model.
Throughout this section and the following ones, some elementary
facts about permutation maps and groups are assumed.

An interconnection network (IN) (refer to Fig. 1) is defined i in [8]
as the five tuples (S,D, M, F, g) where 1) S(D) is a set of source
(destination) nodes, respectively, 2) M is a set of control variables,
3) F is a set of symbols, each of which takes map values from a set
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Fig. 1. An interconnection network model.
Q: C StoanothersetR; C D suchthatQ; N Q; = ®,R, NR; = P

wheneveri # jandS = UL, Q;, D = U, R, for some integer &,
and 4) g is a surjection from F to M, called the control function.

For convenience, the elements of S(D) will be identified as in-
tegers 1,2, -+, S(D). Moreover, for the scope of this paper, it is
assumed that each fiiQi >R isa permutatlon map, and hence we
must have |Q;| = |R;| for all i; 1 < i < k. We shall represent per-
mutations by a cycle notation [14]. For example, if Q; =
{1,2,3,4,5} = R, we write f; = (123) (45) to mean (1) f; = 2,
@fi=3,3f=1 @4 fi=25, and (5) f; = 4. In particular, if
fi=1)(2)(3)(4)(5), i.e., f; is the identity map from Q; to R;, then
we write f; = e. The composition of two permutations # and v,
denoted uv, is defined for each s € § as (s)uv = ((s)u)v. Thus, if
u = (123), v = (134), then uv = (124) (3) = (124).

Intuitively speaking, each f; € F identifies a switch of IN whose
set of source (destination) nodes is Q;(R;); 1 = i < k. The control
function g partitions F into disjoint subsets and it assigns to each
subset a unique control variable m € M. The control variable m is
defined over a finite set of integers and for each integer value of m,
the switch f; controlled by m (i.e., (f;)g = m) assumes a per-
mutation map p;;:Q; — R;. The role of the control function was
described in detail in [8], [9]. For the scope of this paper and without
loss of generality, we shall be concerned with only three of the five
tuples, namely, S, D, and F. Based on this assumption, we define the
following two types of network structure.

Definition 1: A single-stage network IN = (§,D,F) is a col-
lection of k sets of permutatlon maps P(f)) = {pi;j:pi;: Qi = R;,
1=<j =<n} where n, < |Q;| !; 1 =i < k such that every inter-
connection p of IN is in the form p = Il p, ; for some p, ; € P(f.);
l=i=<k

We shall denote the set of all interconnections of IN by P(F).
Clearly, P(F) = IT-, P(f;) where the product of two sets of per-
mutations P(f)) and P(f,) is defined as P(f;) - P(f2) =
{p1; *P2y:1 =j = n;, 1 =j’ < n,}, and it has a straightforward
extension to k such sets.

Definition 2: An n-input/r-stage network, IN = (S,D,F),
hereafter called an (n,r) network, is a cascade of r single-stage
networks IN; = (S;,D;,F;); 1 =i < rsuchthat|S;| = n = |D;|for
ali; 1=i=<r, (2 Sis1:=D;;1=i=r -1, and (3) every
interconnection p of IN is in the form p = II/-; p, whenever
pi€PF);1=i=<r

We note that S;+; := D;; 1 <i < r — 1 isincluded in the defi-
nition to emphasize the physical connections between successive
stages, and it has no significance otherwise. We shall denote the set
of all interconnections of IN by P(F). Clearly, P(F) = II;-, P(F;).

As an example, let IN be an (8, 2) network with stages IN;, IN,
where P(F;) = {e, (12) (345) (678)}, P(F>) = {e, (13)(578)}. Then
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P(F) = {e, (12) (345) (678), (13) (578), (123475) (68)}. One of the
interconnections of IN, i.e., (123475) (68) is shown in Fig. 2. The
numbers in parentheses indicate how the source nodes are mapped
to the destination nodes.

III. RELATIONS AMONG NETWORKS

This section reviews such concepts as covering, containment, and
equivalence relations for interconnection networks. A more detailed
discussion of these relations can be found in [10].

Let p € Sym(S) where Sym(S) is the set of all permutations over
S and called the symmetric group over set S. The conjugate of
p with respect to a map & € Sym(S) is defined as 2 ~'ph. Similarly,
the conjugate set V of a set of permutations U C Sym(S) with
respect to the map k is defined as V = h™'Uh = {h'uh:u € U}.
The notion of conjugation of a set of permutations is linked quite
naturally to functional relations between two interconnection net-
works. The following two results from algebra [14] form the basis
of this assertion.

Lemma 1: Let p, h € Sym(S). Then &~ 'ph has the same cycle
structure as p, and it is obtained by applying & to symbols in p.

O

For example, if 2 = (256)(143) and p = (13)(247), then
h™'ph = (DR3)R) (YA (4)R(T)h) = (41)(537). It is seen that
both p and h ~'ph are products of a 2-cycle and a 3-cycle, and thus
they have the same cycle structure.

Lemma 2: p and q are conjugate in Sym(S); thatis, p = h~'qh
for some h € Sym(S) if and only if they have the same cycle
structure. ' o

Now, let IN = (S, D, F) be an (n, r) network with stages IN; =
S, Di,F); 1 =i =r. Clearly, h”'P(F)h = h ™'\, P(F:)h =
II._, h~'P(F:)h. In other words, conjugating the set of permutations
of IN is equivalent to first conjugating the set of permutations of
each stage and then forming the ordered composition of the conju-
gated sets. Moreover, by Lemma 1, the conjugation of the set of
permutations of IN;; 1 < i =< r by map 4 is equivalent to renaming
the terminal nodes of IN; by 4. Since the same map, i.e., the map
h, is employed in all the conjugations, we conclude that 2 ~'P(F)h
amounts to renaming the terminal nodes of IN by 4 without altering
any of the interconnections between its stages.

The foregoing discussion provides the basis for the following
definitions. Let IN, = (§,D,F,) and IN, = (S, D, F,) be (n,r,) and
(n, r,) networks, respectively.

- Definition 3: IN, is said to cover IN, if for every v e P(F,),
= h™'uh for some u € P(F,) and h € Sym(S).

Definition4: IN, is said to contain IN, if P(F,) C h~'P(F,)h for
some h € Sym(S). If & is the identity map in Sym(S), then IN, is
said to be strictly contained in IN,.

Definition 5: IN, and IN, are said to be functionally equivalent
or conjugate networks if P(F,) = h™'P(F,)h for some h €
Sym(S). If h is the identity map in Sym(S), then the two networks
are said to be strictly functionally equivalent.

The above definitions express the degrees of freedom in inter-
connection network relations. As an example, consider the net-
works shown in Fig. 3. First, note that (23)'P(F,) (23) = P(F.),
and hence IN, and IN, are functionally equivalent. Moreover, it is
seen that eP(F,)e D P(F,)and (23)P(F,) (23) D P(F,,). Therefore,
we conclude that both IN, and IN, contain IN,, where the contain-
ment relation between IN, and IN,, is a strict one. Finally, note that
for each u € P(F,), there exists a map w € P(F,,) such that ¥ and w
have the same cycle structure, and hence, by Lemma 1, h~'uh =
w for some h € Sym({1, 2, 3, 4}). Therefore, IN,, covers IN,.. It can
similarly be shown that IN,, also covers IN,,.

IV. RECONFIGURATION OF SINGLE-STAGE NETWORKS

The preceding two sections have established the algebraic for-
malism underlying the functional relations among interconnection
networks. We now turn our attention to the reconfiguration of one
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Fig. 2. An (8, 2) network realizing (123475)(68).
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Fig. 3. Functionally related (4, 2) networks.

network as another whenever the two networks are functionally
equivalent. That is, given two networks IN, = (§,D,F,) and
IN, = (S, D, F,), we shall consider the problem of constructing a
conjugation map & such that P(F,) = h~'P(F,)h whenever IN, =
IN,, i.e., the two networks are functionally equivalent. We shall
design algorithms which will either lead to such a map % or other-
wise indicate that P(F,) # h~'P(F,)h for all h € Sym(S). Cover-
ing and containment relations among interconnection networks
imply somewhat weaker conditions, and they can be handled once
we know how to deal with the conjugation relations.

As for the type of networks, we shall restrict our attention to those
networks whose switches are programmable for cycle and identity
maps over their terminal nodes. Although the networks which con-
form to this condition form a small subset of all interconnection
networks, the main objective of the current work is to demonstrate
the methods which we use to construct equivalence maps among
such networks. A more general treatment of the subject will be
deferred to another place.
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We begin with single-stage networks.

Definition 6: Let u € Sym(S). The set M(u) = {s:(s)u # s,
s € S} is called the moving set of u in S.

Lemma 3: Letu = (a1,a2,""-,a;) and v = (b, b2, -+, b;) be
two cycle maps in Sym(S). If M(x) N M(v) = @ then M(h~'uk) N
M(h~'vh) = ® for all h € Sym(S).

- Proof: By Lemma 1, h~'uh = ((a1)h(ax)h - - - (a;)h) and
h™'h = ((b1)h(b2)k - - - (b;)h). Now suppose that M(x) N M(v) =
®, but M(h *uh) N M(h " 'vh) # ®. Then for some s, ;1 <5 <
and 1 =t = j, (a;)h = (b,)h, which in turn implies that a, = b,,
contradicting the assumption that M(x) N M(v) = ®. O

Theorem 1: Let IN, = (§,D,F,) and (IN, = (§,D,F,)) be an
(n,1) network with switches f,;(f,)); 1 =j =< k. Suppose that
P(f,) = = {e,u;} and P(f,;) ={e,v;}; 1 =j < k where u;(v;) is a
cycle map defined over the terminal nodes of switch f,,,( foi)s
1 <j < k. Then IN, = IN, if and only if 2 (I, u,)h = H LY

for some h € Sym(S).

Proof Clearly, ~I(IT)- 1u,)h I, A 'wh. Thus, if
R, u)h =TI, v, then T_ h~'uh = H _,v;. Now, since
M(uj) n Muy) =@ wheneverj 9& Jj', by Lemma 3, M(h~ ‘wih) N
M(h~'uyh) = ® wheneverj # j'. Hence Il N u,h is a product
of disjoint cycles where the cycles are 4~ u,h 1'<j <k Onthe
other hand, T j=1 Y is also a product of disjoint cycles, and therefore,
by Lemma 1 huh = vy 1 = j <k for some w € Sym({1,

k}) It follows that 2~ 'P(F,)h —k h~ ‘(H, e, u;Hh =
h~ e, uth = s {e, h'wh} = ;- {e, vm} = P(F.).
Hence IN, = IN.. To prove the converse, Suppose thath 'P(F.)h
= P(F,) but h~ (H Luj)h # H _,V;. Then A~ (H Lu)h =
IT,_,v; for some s; 1 =5 <k and by Lemma 1, H 14 and
II;_, v;, must have the same cycle structure. However, this is not
possible since s < k and the cycles of both products are pairwise
disjoint. We conclude that 2~ ‘(H,_ uj)h = Hk L V;, and the asser-
tion follows. O
The above theorem reduces the problem of finding a map % satis-
fying the set equality A 'P(Fu)h = P(Fv) to one of determining that
map through the scalar equality 4~ WIS, u)h = Hf ;. Thus, all
that remains to be done is to obtam h from the latter equality.
Now, sinc¢ by Lemma 1 II 1 4; and H 1 V; have the same cycle
structure, and since M(u;) N M(u,) = <I>whenever j # j', we must
map u;; 1 <j < k tosome v;; 1 < j’ < k such thath"ujh = v,
Thus, we must first test to see if there exist k¥ pairs of maps u;, vy
such that 2~ 'w;s = v;. If not, by Theorem 1 we conclude that
IN, # IN,. Otherwise, we construct & as follows. Let u; =

(@102 +a,) and vy = (biby- -+ b,). Then h~'wh = ((a1)h(az)k
<++(a:)h) = (bib2- -+ b,). Soif welet (a;)h = b,, then we must have
(a2)h = by, -+ ,(a,)h = b,. By repeating this construction for all

other pairs u;, v;; we can determine the map 4 over all of the set S.
We remark that the matching of (a;)A to b, in the above construction
is arbitrary and (a:)h = b,, or (a1)h = bs, -+, (a1)h = b, will all
lead to a conjugation map. From this observation, it follows that the
conjugation map between IN, and IN, is not unique. An exact count
of such maps, as well as the complexity of the above procedure, was
given in [11], and a formal algorithm for constructing the map &
appeared in [1]. As an example, let

P(f.) = {e, (123)}, P(f,) = {e, (4567)}, P(f.;) = {e, (89)},
P(f,) = {e,(3456)}, P(£.,) = {e, (178)}, P(f)) = {e, (29)}.

We match (123) with (178), (4567) with (3456), and (89) with (29),
and obtain the map & = (2765438).

V. RECONFIGURATION OF MULTISTAGE NETWORKS

In the preceding section, we described a procedure for construct-
ing equivalence maps between two (n, 1) networks. This procedure
exploited the fact stated in Theorem 1. The following result will
serve a similar purpose for multistage networks.

Theorem 2: Let IN, = (S,D,F,) and IN, = (S,D,F,) be (n,r)
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networks with stages IN,, and IN,,; 1 =i = r. Also let {e,u;;}
({e,vi;P; 1 =j = ki; 1 =i =< r be the set of permutations of the
Jjth switch of stage i in INF:‘ (IN,) where k; is the number of switches
in stage i. Then, if h (L%, u; )b = IIL, v,;; 1 < i < r for some
h € Sym(S), then IN, = IN,.
Proof: Letu = H, L u; for some u; € P(F Bl=i=sr Smce
h™'(GL, u;)h = (T, v,) by Theorem 1, h~'uh € P(F,,), and
hence, O_,h 'wh = h'(L;_, u:)h = h " 'uh € II,_, P(F,,) or
h™'uh € P(F ). Thus, » 'P(F,)h C P(F,). Itis similarly shown that
h7'P(F)h D P(F,), and hence the assertion follows. o

Although Theorem 2 is not as strong as Theorem 1 insofar as
completely reducing the set equality 2 ~'P(F,)h = P(F,) to the set
of expressions & (15, u; ;)b = Hf;lv,-, ;31 =i = r,itdoes allow
one to construct functional equivalences between two (n,r) net-
works directly from the latter set of relations. Thus, all that remains
to be done is to find a procedure to obtain 4 from these relations. We
adopt the followmg approach.

Denote IT%, u; ; by u; andH Ly vy by vis 1 < i < r. We need to
construct # such that h- uh = v 1 =i =r. Now suppose
u; = s;;1.<i <r and (s)h = s’ where s,s’,s; € S. Then it is
easily verified that (s;)h = s/ where s/ = (s’)v,-; l=si=rIn
other words, whenever we map s € S to s’ € S by s, we must map
the image of s under u; to the image of s’ under v;; 1 = i = r. This
observation forms the basis of the following conjugation map con-
struction procedure.

Choose a pair of symbols (s, s ) and form the pairs ((s)u;, (s ")v:);
1 =i = r. If among all the pairs, including (s, s’), there exist at
least two pairs ((s)ui,, (s ")v;,) and ((s)ui,, (s")v;,) such that either
($)ui, = (S)uy, or (s")v;, = (s')vy, but not both, then return to the
first step as (s, s’) cannot lead to a conjugation map. Else, test if
every s € S appears at least once as the first entry in some pair
among all the pairs constructed. If so, then stop and read the map &
from these pairs. Otherwise, repeat the same procedure for each pair
((Hui, (s")v:); 1 =i =< r; that is, form the pairs ((s)u; * u;, (sv; *
vj)foralli,j;1 =i =r;1 =j =< r and test to see if these pairs,
when combined with the ones formed earlier, satisfy the conditions
above. This process is repeated until either every s € S appears at
least once as the first entry in some pair and every two pairs are
either disjoint or they are identical or among all the pairs con-
structed thus far there exist at least two pairs such that exactly one
of the entries of one pair is identical to the corresponding entry of
the other pair.

A formal arid more complete treatment of the above procedure
appears in [11]. Here, we illustrate it further with the following
example. Let

u; = (123)(45) (678),

u, = (1234) (56) (78),
us = (15) (26) (37) (48),

v, = (154)(26) (378) ,
v, = (1254) (36) (78),
vs = (17) (28) (34) (56) .

In order to mechanize the above procedure, we employ a tree
structure introduced in [11]. Such a tree for the above pairs of
permutations is shown in Fig. 4. The root of the tree corresponds to
the pair (s,s’), which, in this case, is (1,5). Accordingly, the
successor nodes of (1,5) correspond to pairs ((1)ui, (5)v1),
((Duz, (5)v2), ((1)us, (5)vs), which are (2,4), (2,4), and (5, 6), re-
spectively. Note that the successor node in the middle, i.e., (2, 4) is
terminated with a check mark underneath it. This clearly stems from
the fact that (2, 4) appears once more at the same level and only one
needs to be expanded. The entire tree is grown on a breadth-first
basis by finding the successors of each node, i.e., by computing the
images of 1(5) under various compositions of u;(v;); 1 = i =< r. For
example, the second leftmost node in fourth level, i.e., the node
with pair (4,2), is obtained by computing ((1)u: * u; * ua,
(S)v; - v; * v,). Since all the nodes of the tree consist of pairs which
are pairwise identical or disjoint, and since every s € {1,2,---,8}
appears at least once in the tree, the networks IN, and IN, repre-
sented by the permutations u;, v;; 1 < i = 3 are conjugate, and the
map # is read from the pairs in the tree as A = (1563) (24).
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(1,5)

(2,4) M(2,4) W30
v
3,1 3,1) A(6,3) ¢52) \6,3)\(1,5
3,1 (/) ( /) (/)
(1,5 %,2) J (7,7 7,7 (5,6:)’\(2,4) (8,8)
4 v v v %
3,1) 6,3) 7(7,7) '(4,2)
12 v v v

Fig. 4. The mappability tree for the pair of symbols (1, 5).

We reinark that not each pair of symbols (s,s’) chosen from
§ ={1,2,---, 8} will lead to a tree from which a conjugation map
h canbe constmcted Some pairs may result in successor nodes with
conflictiig entries, thereby indicating that & cannot be formed
through these pairs. On the other hand, some others may not lead to
any such conflicting entries, but they will not contain all of the
symbols of § and hence will yield only a part of A. In such cases,
several trees will have to be constructed before all of & can be
determined. These and other aspects of the conjugation map con-
struction procedure are discussed in more detail in [11].

VI. CONCLUSIONS

The correspondence has dealt with the reconfiguration of inter-
connection networks. The reconfigurability of an intérconnection
network as another one is shown to be closely linked to functional
relations between the two networks. Various forms of such relations
have been explored; and it has been shown that most of these derive
from conjugatlon maps between the sets of interconnections of the
networks in question. Based on these facts, two procedures have
been given to reconfigure a network as another in its equivalence
class. These procedures are more general than the one which ap-
peared in [10] as they impose no restriction on the control scheme
of the networks to which they apply. Their only limitation stems
from thie types of switches used in the networks to which they apply.
Thus, extension of these procedures to networks with arbitrary
switches will be a good topic for further research.
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